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SEMILEPTONIC DECAYS OF D MESONS

Written January 2008 by Lawrence Gibbons (Cornell Univ.)
and Milind V. Purohit (Univ. of South Carolina).

I. Introduction and theory

Semileptonic decays of hadrons involve the interaction of a

leptonic current with a hadronic current, as shown in Fig. 1.

The simplicity of the leptonic current allows us to use measure-

ments of semileptonic decays to obtain the form factors that

describe the nonperturbative hadronic current [1]. Conversely,

because the leptonic and hadronic final-state systems do not

interact, semileptonic decays for which the form factors can be

predicted provide a powerful means for obtaining CKM matrix

elements [2].

From general considerations such as Lorentz invariance, the

matrix element M for the semileptonic decay of a D meson,

D → M`ν, must have the form

M = −i
GF√

2
VcqL

µHµ, (1)

where GF is the Fermi constant and Vcq is a CKM matrix

element. The leptonic current Lµ can be evaluated directly

from the lepton spinors, while the hadronic current Hµ requires

a fundamentally nonperturbative QCD calculation. Lorentz in-

variance, however, implies that we can parametrize Hµ in terms

of the independent four-momenta and polarizations in the pro-

cess. The nonperturbative form factors are functions of the

hadronic momentum transfer squared: q2 = W ∗2 ≡ (p` + pν)2,

where p` and pν are the four momenta of the charged lepton

and the neutrino, and W ∗ is the virtual W±.

For a decay D → P`ν, where D and P are pseudoscalars,

Hµ is purely a vector current, and can be represented by two

form factors, with f+(q2) and f0(q
2) a typical choice. Then

Hµ =
〈

P (p)|q̄γµc|D(p′)
〉

=

f+(q2)

[

(p′ + p)µ − (M2
D − m2

P )

q2
qµ

]

+ f0(q
2)

(M2
D − m2

P )

q2
qµ.(2)

Here MD and p′ are the mass and four momentum of the parent

D meson, mP and p are those of the final-state meson, and

q = p′ − p. Kinematics constrains f+(0) to equal f0(0).
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Figure 1: Decay angles θV , θ`, and χ, defined
for D+ → K∗`+ν`. The angle χ between the de-
cay planes shown is defined in the D+ reference
frame, while the other angles are defined in the
hadronic and leptonic center-of-mass frames.

A decay D → V `ν, where V is a vector meson, can proceed

through both axial and vector currents, and the polarization

vector ε of the V enters the parametrization; there are altogether

four form factors. A common choice [3] represents the vector

current as

Vµ =
〈

V (p, ε)|q̄γµc|D(p′)
〉

=
2V (q2)

MD + mh
εµνρσε∗νp′ρpσ, (3)

and the axial current as

Aµ =
〈

V (p, ε)| − q̄γµγ5c|D(p′)
〉

=

−i(MD + mh)A1(q
2)ε∗µ + i

A2(q
2)

MD + mh
(ε∗ · q)(p′ + p)µ+

i
2mh

q2

(

A3(q
2) − A0(q

2)
)

[ε∗ · (p′ + p)]qµ . (4)

Here mV is the mass of the V meson, and

A3(q
2) =

(MD + mV )

2mV
A1(q

2) − (MD − mV )

2mV
A2(q

2). (5)

Kinematics constrains A3(0) to equal A0(0).

April 7, 2008 14:43



– 3–

When the charged lepton is light (an e or µ), contributions

to the partial width involving qµLµ give rise to terms propor-

tional to the lepton mass [3], so vanish in the limit m` → 0.

Then the pseudoscalar decay can effectively be described in

terms of the single form factor f+(q2), and the vector decay in

terms of the three form factors, V (q2), A1(q
2), and A2(q

2). In

this limit, the differential partial widths, integrated over various

angular distributions, become

dΓ(D → P`ν̄`)

dq2 d cos θ`
=

G2
F |Vcq|2
32π3

p∗3|f+(q2)|2 sin θ2
` , (6)

dΓ(D → V `ν̄`)

dq2 d cos θ`
=

G2
F |Vcq|2

128π3M2
D

p∗q2×

[

(1 − cos θ`)
2

2
|H−|2 +

(1 + cos θ`)
2

2
|H+|2 + sin2 θ`|H0|2

]

.(7)

Here p∗ is the (q2-dependent) magnitude of the 3-momentum of

the decay meson in the D rest frame. The dependence on the

angle θ` between the charged lepton in the virtual W rest frame

(see Fig. 1) and the direction of the virtual W ∗ results directly

from the V − A structure of the W → `ν̄` process. In D →
P`ν decay, the W ∗ can only be longitudinally polarized and

the angular dependence is independent of the nonperturbative

dynamics; this gives a powerful experimental cross-check or

constraint. In D → V `ν decay, all W ∗ polarizations are allowed

and there are three helicity amplitudes:

H±(q2) =
(MB + mV )2A1(q

2) ∓ 2MDp∗V (q2)

MD + mV

H0(q
2) =

1
√

q2

M2
B

2mV (MD + mV )
×

[

(

1 − m2
V − q2

M2
D

)

(M2
D + m2

V )A1(q
2) − 4p∗

2
A2(q

2)
]

.(8)

The left-handed nature of the quark current manifests itself

as |H−| > |H+|. This implies a charged-lepton momentum

spectrum in D → V `ν decay that is softer than the neutrino

spectrum.
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Experimentally, one must understand the q2 dependence

(“shape”) of the form factors (and their relative normaliza-

tions in vector decay) to evaluate reconstruction efficiencies.

Extraction of the CKM matrix element requires knowledge

of the absolute normalization of the form factors. Conversely,

precise studies of the form-factor shapes and normalizations

(with CKM elements input from other measurements) provide

a crucial check of the theoretical approaches to nonperturbative

calculations, such as lattice QCD (LQCD) or Light Cone Sum

Rules.

Form-factor parametrizations

Various parametrizations of form factors have been intro-

duced to try to capture the fundamental strong dynamics of

the decay, while allowing comparisons of a small number of

parameters between different experiments and between theory

and experiment. Typically, a parametrization takes advantage

of dispersion relations (see, e.g., Ref. [4]) , which allow expres-

sion of a form factor in terms of an explicit pole and a sum of

effective poles:

f(q2) =
f(0)

(1 − α)

1

1 − q2

m2
pole

+
N
∑

k=1

ρk

1 − 1
γk

q2

m2
pole

, (9)

Here mpole is the mass of the lowest-lying cq̄ resonance expected

to make the largest contribution to the form factor (at least

near q2
max), given the underlying c → q quark transition. For

the D → π transition involving a vector current, for example,

the D∗ meson should dominate. The parameter α determines

the fractional contribution from the dominant resonance at

q2 = 0, and the ρK and γK are expansion parameters for the

effective poles.

April 7, 2008 14:43



– 5–

Pole-motivated parametrizations

Using the dispersion relation, the form factor can be ap-

proximated to any desired accuracy by keeping enough terms in

the expansion. However, in this approach, the decay dynamics

are not explicitly predicted, and the convergence properties are

not manifest.

Omitting the sum over effective poles in Eq. (9) is an ap-

proximation called “nearest-pole dominance” or “vector-meson

dominance.” The resulting form factor is

f+(q2) =
f+(0)

(1 − q2/m2
pole

)
. (10)

However, values of mpole that fit the data do not agree with the

expected vector meson masses [5]; see the next Section.

The modified-pole, or Becirevic-Kaidalov (BK), parametriza-

tion [6], keeps the first term of the effective pole expansion,

but makes additional assumptions to allow expression of the

form factor with only two parameters: the intercept f+(0) and

a shape parameter, αBK . The BK parametrization takes the

form

f+(q2) =
f+(0)

(1 − q2

m2
pole

)(1 − αBK
q2

m2
pole

)
. (11)

For the ansatz to be self-consistent, αBK should be near 1.75.

However, values of αBK that fit the data are nowhere near 1.75

(see the next Section).

z expansion

Several groups have advocated a different series expan-

sion for the physical description of heavy-meson form fac-

tors [1,4,7,8]. The expansion is congruous with the dispersion

relations, yet provides a systematic framework for improving

the precision to which a form factor is described.

To obtain a convergent series, the expansion is formulated

as an analytic continuation of the form factor into the complex

t = q2 plane. The branch cut on the real axis for t > (MD+mh)2

is mapped onto the unit circle by the variable z, defined as

z(q2, t0) =

√

t+ − q2 −√
t+ − t0

√

t+ − q2 +
√

t+ − t0
; (12)
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Figure 2: The transformation from q2 to the
z variable.

see Fig. 2. Here t± ≡ (MD ± mh)2 and t0 is the (arbitrary)

q2 value that maps to z = 0. The expression for a form factor

becomes

f(q2) =
1

P (q2)φ(q2, t0)

∞
∑

k=0

ak(t0)[z(q2, t0)]
k. (13)

The P (q2) factor accommodates sub-threshold resonances, thus

solving the convergence issues that a naive expansion would

face with a nearby pole. For example,

P (q2) ≡
{

1 for D → π
z(q2, M2

D∗

s
) for D → K. (14)

The “outer” function, φ(t, t0), can be any analytic function.

A standard choice (e.g. [4,7,9]) arises from considerations of

unitarity and the perturbative OPE, and leads to the parameter

constraint (at 1/mc)
∑na

k=0 a2
k ≤ 1.

Good convergence properties are expected since the physical

region is restricted to |z| < 1. The physical observables do not

depend on the choice of φ(q2, t0) or on the value of t0. In fact,

choosing t0 = t+

(

1 −
√

1 − t−/t+

)

minimizes the maximum

value that z can assume. For D → π`ν̄, for example, this choice

implies that |z| < 0.17 [5].
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II. Semileptonic decays to pseudoscalar mesons

As noted above, D → Peν and D → Pµν decays can

be well described by a single form factor, f+(q2). Corrections

for the finite µ mass in the D → Pµν decays only become

noticeable at low q2 [10], while corrections for D → Peν

decays are negligible everywhere. Recent experiments studying

the f+ form factor for D0 and D+ decays to K`ν` and π`ν`

have moved beyond the simple pole-dominance model and give

information about the modified pole parametrization and, in

some cases, the z-expansion parametrization.

Pole parametrizations

Measurements of the effective pole mass in the simple pole

model and of the αBK parameter in the modified pole model

are given for D → K`ν and D → π`ν in Table 1 and are shown

in Fig. 3.

As is clear from Fig. 3, the K`ν data yield pole masses

that are significantly lower than the mass of the D∗
s resonance

that should dominate in the vector-dominance (simple-pole)

model; and π`ν data suggest a pole mass that is lower than

the D∗ mass. The simple-pole parametrizations can usually

provide good fits to the data, but low pole masses indicate that

higher-mass resonances and the DK and Dπ continuum make

non-negligible contributions.

The BK parametrization adds an effective single-parameter

correction to the leading physical pole in an attempt to account

for these secondary contributions. The fits, however, yield val-

ues of αBK that are far smaller than the value αBK ≈ 1.75

that would be consistent with the assumptions that lead to the

simplified form.

The recent unquenched form-factor calculations by the

combined Fermilab lattice, MILC, and HPQCD groups for

D → K/π`ν̄ [17] also yield an αBK value. The chiral ex-

trapolation to physical light-quark masses for these calculations

uses the BK parametrization for intermediate interpolation as

a function of K or π energy, effectively building the form into

the final form-factor prediction. There are differences between

the experimental results and the values derived from the LQCD
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Table 1: Results for mpole in the simple pole model, and for

αBK in the BK-modified model for D → K`+ν and D → π`+ν
decays. Also given are lattice QCD predictions.

D → K`ν or π`ν Ref. mpole(GeV/c2) αBK

CLEO III (D0 → K−) [11] 1.89 ± 0.05+0.04
−0.03 0.36 ± 0.10+0.03

−0.07

FOCUS (D0 → K−) [10] 1.93 ± 0.05 ± 0.03 0.28 ± 0.08 ± 0.07

Belle (D0 → K−) [12] 1.82 ± 0.04 ± 0.03 0.52 ± 0.08 ± 0.06

BaBar (D0 → K−) [13] 1.884 ± 0.012 ± 0.016 0.377 ± 0.023 ± 0.031

CLEO-c (D0 → K−) [14] 1.943+0.037
−0.033 ± 0.011 0.258+0.063

−0.065 ± 0.020

CLEO-c (D0 → K−) [16] 1.97 ± 0.03 ± 0.01 0.21 ± 0.05 ± 0.03

CLEO-c (D+ → KS) [14] 2.02+0.07
−0.06 ± 0.02 0.127+0.099

−0.104 ± 0.031

CLEO-c (D+ → KS) [16] 1.96 ± 0.04 ± 0.02 0.22 ± 0.08 ± 0.03

Ferm. lattice/MILC/HPQCD [17] − 0.50 ± 0.04

CLEO III (D0 → π−) [11] 1.86+0.10+0.07
−0.06−0.03 0.37+0.20

−0.31 ± 0.15

FOCUS (D0 → π−) [10] 1.91+0.30
−0.15 ± 0.07 −

Belle (D0 → π−) [12] 1.97 ± 0.08 ± 0.04 0.10 ± 0.21 ± 0.10

CLEO-c (D0 → π−) [14] 1.941+0.042
−0.034 ± 0.009 0.20+0.10

−0.11 ± 0.03

CLEO-c (D0 → π−) [16] 1.87 ± 0.03 ± 0.01 0.37 ± 0.08 ± 0.03

CLEO-c (D+ → π0) [14] 1.99+0.11
−0.08 ± 0.06 0.05+0.19

−0.22 ± 0.13

CLEO-c (D+ → π0) [16] 1.97 ± 0.07 ± 0.02 0.14 ± 0.16 ± 0.04

Ferm. lattice/MILC/HPQCD [17] − 0.44 ± 0.04

chiral extrapolation procedure. Since with αBK we are examin-

ing more directly corrections to the leading pole behavior of f+,

the discrepancies may have their origin in the nonphysical de-

scription of the form factor coupled with differing experimental

(and lattice) sensitivities across the q2 range.

z expansion results

The z expansion allows the introduction of shape parameters

in a controlled fashion. BaBar [13] and CLEO-c [16] have

analyzed form factors using the first three terms of Eq. (14):

a0 controls the absolute normalization of f+(q2), and a1 and

a2 control its q2 dependence. Table 2 gives the values of the

normalized shape parameters r1 = a1/a0 and r2 = a2/a0. The

BaBar correlation coefficient was obtained by refitting their
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Figure 3: Effective pole masses for the simple
pole parameterization fits (left), and the αBK

parameter for the modified pole parameteriza-
tion fits (right). K`ν results are shown as open
circles; π`ν results are shown as closed squares.
Unless indicated otherwise, the measurements
are for D0 decay.

published branching-fraction information with their published

total covariance matrix.

Table 2: Values of r1 = a1/a0 and r2 = a2/a0 from z expan-
sions. The correlation coefficient ρ is for the total uncertainties
(statistical + systematic) on r1 and r2.

Expt. Mode Ref. r1 r2 ρ

BaBar D0 → K− [13] −2.5 ± 0.2 ± 0.2 1 ± 6 ± 5 −0.64

CLEO-c D0 → K− [16] −2.4 ± 0.4 ± 0.1 21 ± 11 ± 2 −0.81

Average D0 → K− −2.3 ± 0.23 5.9 ± 6.3 −0.74

CLEO-c D+ → KS [16] −2.8 ± 6 ± 2 32 ± 18 ± 4 −0.84

CLEO-c D0 → π+ [16] −2.1 ± 7 ± 3 −1.2 ± 4.8 ± 1.7 −0.96

CLEO-c D+ → π0 [16] −0.2 ± 1.5 ± 4 −9.8 ± 9.1 ± 2.1 −0.97
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The values listed correspond to the choice

t0 = t+

(

1 −
√

1 − t−/t+

)

,

which minimizes the maximum value that |z| can obtain. The

standard outer function φ(q2, t0) given in Eq. (14) is used.

For the D0 → K−`+ν measurements, the 68% and 96%

probability contours (assuming Gaussian errors) are shown in

Fig. 4. The agreement between BaBar and CLEO-c in data

improves over the 2.5 standard deviation discrepancy seen in

αBK.

Table 2 also gives values of r1 and r2 from a simultaneous

fit to the BaBar and CLEO-c branching-fraction measurements.

Figure 4 shows the same values. To account for final-state

radiation effects in the BaBar measurement, we allow a bias

shift between the fit parameters from the BaBar and CLEO-c

data. A χ2 penalty is added for any deviation from the central

value for the BaBar corrections, according to their systematic

uncertainties on the corrections. The CLEO measurements un-

fold the reconstructed q2 distributions back to the pre-FSR

distributions, so the corresponding correction is not necessary.

The D0 and D+ parameters are in good agreement.
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Figure 4: The 68% and 96% probability con-
tours for the BaBar and CLEO-c r1 and r2

measurements. The contours from the simulta-
neous fit to the BaBar and CLEO-c data are
also shown.

III. Semileptonic decays to vector mesons

Eq. (7) and Eq. (8) described D → V `ν decay rates in

terms of the form factors H±(q2) and H0(q
2) for the three

helicity states of the W boson. In terms of angles defined in

Fig. 1, where the vector meson decays to two pseudoscalars, we

have

dΓ(P → V lν, V → P1P2)

dq2d cos θV d cos θldχ
=

3G2
F

2048π4
|Vcq|2

p∗(q2)q2

M2
D

B(V → P1P2)

{

(1 + cos θl)
2 sin2 θV |H+(q2)|2

+ (1 − cos θl)
2 sin2 θV |H−(q2)|2 + 4 sin2 θl cos2 θV |H0(q

2)|2

+ 4 sin θl(1 + cos θl) sin θV cos θV cos χH+(q2)H0(q
2)

− 4 sin θl(1 − cos θl) sin θV cos θV cos χH−(q2)H0(q
2)

− 2 sin2 θl sin
2 θV cos 2χH+(q2)H−(q2)

}

. (15)
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Table 3: Results for rV and r2.

D+ → K
∗0

`+ν Expt. Ref. rV r2

E691 [18] 2.0 ± 0.6 ± 0.3 0.0 ± 0.5 ± 0.2

E653 [19] 2.00 ± 0.33 ± 0.16 0.82 ± 0.22 ± 0.11

E687 [20] 1.74 ± 0.27 ± 0.28 0.71 ± 0.08 ± 0.06

E791 (e) [21] 1.90 ± 0.11 ± 0.09 0.71 ± 0.08 ± 0.09

E791 (µ) [22] 1.84 ± 0.11 ± 0.09 0.75 ± 0.08 ± 0.09

Beatrice [23] 1.45 ± 0.23 ± 0.07 1.00 ± 0.15 ± 0.03

FOCUS [24] 1.504 ± 0.057 ± 0.039 0.875 ± 0.049 ± 0.064

Average 1.62 ± 0.055 0.83 ± 0.054

FOCUS [25] 1.706 ± 0.677 ± 0.342 0.912 ± 0.370 ± 0.104

D0 → K
0
π−µ+ν

BaBar [26] 1.636 ± 0.067 ± 0.038 0.705 ± 0.056 ± 0.029

D+
s → φe+ν

CLEO [27] 1.40 ± 0.25 ± 0.03 0.57 ± 0.18 ± 0.06

D0, D+ → ρeν

acceptable. And FOCUS obtains an acceptable χ2-based prob-

ability of 5.2% when a Kπ S-wave is included.

Evidence for an S-wave component in vector decays

The evidence from FOCUS for an S-wave component is

an asymmetry in the decay amplitude in the cos θV distribu-

tion [28]. Including a constant S-wave amplitude of the form

Aeiδ in Eq. (15) leads to an interference term proportional to

|AH0 sin θl cos θV |, which can be seen as an asymmetry in the

roughly cos2 θV form of the differential distribution caused by

the dominance of H0 compared to H±.

With the S-wave amplitude included, FOCUS finds that

the fit improves markedly; the S-wave amplitude and phase are

A = 0.330 ± 0.022 ± 0.015 GeV−1 and δ = 0.68 ± 0.07 ± 0.05

[24].

Model-independent form factor measurements

April 7, 2008 14:43
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Figure 6: Model-independent form factors from
CLEO-c.

CLEO-c has extracted model-independent form factors [29]

in D+ → K−π+e+νe decays, shown in Fig. 6: H0(q
2) clearly

dominates, especially at low q2. Even though the Kπ mass dis-

tribution appears to be completely dominated by the K∗(892),

a fairly good determination, via the interference term, of the

S-wave form factor h0(q
2) is also obtained. At the moment, the

D-wave and S-wave components appear to be smaller than the

S-wave. Higher statistics data from BaBar and Belle may reveal

deficiencies in the pole model.

z expansions for vector decay

CLEO-c has also made the “Hill transformation” from q2 to

the z variable. In the narrow allowed range of z, the transformed

H0 data are consistent with being constant, indicating that the

transformation works well as a way of describing vector form-

factors.
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